
djangocms-frontend Documentation
Release 0.9.0

Fabian Braun

Apr 26, 2022

CONTENTS

1 djangocms-frontend 1

2 Key features 3

3 Description 5
3.1 Contents . 5

3.1.1 Getting started . 5
3.1.2 Grid plugins . 16
3.1.3 Component plugins . 18
3.1.4 Forms . 27
3.1.5 How-to guides . 27
3.1.6 Reference . 33
3.1.7 Index . 36

3.2 Indices and tables . 36

Index 37

i

ii

CHAPTER

ONE

DJANGOCMS-FRONTEND

djangocms-frontend is a blugin bundle based on djangocms_bootstrap5. Its objective is to provide a set of popular
frontend components independent of the currently used frontend framework such as Bootstrap, or its specific version.

1

https://github.com/gl-agnx/djangocms-bootstrap5

djangocms-frontend Documentation, Release 0.9.0

2 Chapter 1. djangocms-frontend

CHAPTER

TWO

KEY FEATURES

• Support of Bootstrap 5.

• Separation of plugins from css framework, i.e., no need to rebuild you site’s plugin tree if css framework is
changed in the future, e.g., from Bootstrap 5 to a future version.

• New link plugin allowing to link to internal pages provided by other applications, such as djangocms-blog.

• Nice and well-arranged admin frontend of djangocms-bootstrap4

• Management command to migrate from djangocms-bootstrap4. This command automatically migrates all
djangocms-bootstrap4 plugins to djangocms-frontend.

• Extensible within the project and with separate project (e.g., a theme app)

• Accordion plugin and simple forms plugin w/ Bootstrap-styled forms on your cms page.

3

https://getbootstrap.com
https://github.com/nephila/djangocms-blog
https://github.com/django-cms/djangocms-bootstrap4

djangocms-frontend Documentation, Release 0.9.0

4 Chapter 2. Key features

CHAPTER

THREE

DESCRIPTION

The plugins are framework agnostic and the framework can be changed by adapting your project’s settings. Also, it
is designed to avoid having to rebuild your CMS plugin tree when upgrading e.g. from one version of your frontend
framework to the next.

django CMS Frontend uses django-entangled by Jacob Rief to avoid bloating your project’s database with css
framework-dependent tables. Instead all design parameters are stored in a common JSON field and future releases
of improved frontend features will not require to rebuild your full plugin tree.

The link plugin has been rewritten to not allow internal links to other CMS pages, but also to other django models such
as, e.g., posts of djangocms-blog.

djangocms-frontend provides a set of plugins to structure your layout. This includes three basic elements

The grid The grid is the basis for responsive page design. It splits the page into containers, rows and columns. De-
pending on the device, columns are shown next to each other (larger screens) or one below the other (smaller
screens).

Components Components structure information on your site by giving them an easy to grasp and easy to use look.
Alerts or cards are examples of components.

Forms (work in progress) Finally, djangocms-frontend lets you display forms in a nice way. Also, it handles form
submit actions, validation etc. Forms can be easily structured using fieldsets known from django’s admin app. But
djangocms-frontend also works with third-party apps like django-crispy-forms for even more complex layouts.

3.1 Contents

3.1.1 Getting started

Installation

Install package

For a manual install run pip install djangocms-frontend

Alternatively, add the following line to your project’s requirements.txt:

djangocms-frontend

5

https://github.com/jrief/django-entangled
https://github.com/nephila/djangocms-blog
https://github.com/django-crispy-forms/django-crispy-forms

djangocms-frontend Documentation, Release 0.9.0

Make apps available to your django project

Add the following entries to your INSTALLED_APPS:

'djangocms_icon',
'djangocms_frontend',
'djangocms_frontend.contrib.accordion',
'djangocms_frontend.contrib.alert',
'djangocms_frontend.contrib.badge',
'djangocms_frontend.contrib.card',
'djangocms_frontend.contrib.carousel',
'djangocms_frontend.contrib.collapse',
'djangocms_frontend.contrib.content',
'djangocms_frontend.contrib.grid',
'djangocms_frontend.contrib.image',
'djangocms_frontend.contrib.jumbotron',
'djangocms_frontend.contrib.link',
'djangocms_frontend.contrib.listgroup',
'djangocms_frontend.contrib.media',
'djangocms_frontend.contrib.tabs',
'djangocms_frontend.contrib.utilities',

Note: Using Django 2.2 to 3.1

You will need to add django-jsonfield-backport to your requirements.txt and add
"django_jsonfield_backport" to your INSTALLED_APPS.

Create necessary database table

Finally, run python manage.py migrate

djangocms-frontend now is ready for use!

Adding styles and javascript manually

django CMS frontend does not automatically add the styles or javascript files to your frontend, these need to be added
at your discretion.

Out of the box, djangocms-frontend is configured to work with Bootstrap 5. Styles should be added to your <head>
section of your project template (often called base.html). Javascript should be added at the end of the <body> section
or your template. For illustration and an easier start, djangocms-frontend comes with example templates.

6 Chapter 3. Description

https://getbootstrap.com/

djangocms-frontend Documentation, Release 0.9.0

Using example templates of djangocms-frontend

djangocms-frontend comes with example templates. The simplest way to activate Bootstrap 5 is by using the following
base template (base.html)

{% extends "bootstrap5/base.html" %}
{% block brand %}My Site{% endblock %}

Note: We recommend developing your own base.html for your projects. The example templates load CSS and JS
files from a CDN. Good reasons to do so are

• djangocms-frontend does not contain CSS or JS files from Bootstrap or any other framework for that matter.
The example tempaltes load CSS and JS from a CDN.

• It is considered safer to host CSS and JS files yourself. Otherwise you do not have control over the CSS and/or
JS that is delivered.

• It is a common practice to customize at least the CSS part, e.g. with brand colors.

The example template is customizable by a set of template blocks:

{% block title %} Renders the page title. Defaults to {% page_attribute "page_title" %}

{% block content %} Here goes the main content of the page. The default setup is a <section>with a placeholder
called “Page Content” and a <footer> with a static placeholder (identical on all pages) called “Footer”:

{% block content %}
<section>

{% placeholder "Page Content" %}
</section>
<footer>

{% static_placeholder "Footer" %}
</footer>

{% endblock content %}

{% block navbar %} This block renders a navigation bar using the Bootstrap 5 navbar classes and django CMS’
menu system. If you need to add additional navigation on the right hand side of the nav bar populate the block
searchbar (which can include a search function but does not have to). Also, the block brand is rendered in the
navigation bar.

{% block base_css %} Loads the framework’s CSS. Replace this block if you prefer to include your the CSS from
your server.

{% block base_js %} Loads the framework’s JS. Replace this block if you prefer to include your the JS from your
server. JS is loaded before {% render_block 'js' %}.

{% block end_js %} Loads additional JS at the end of the page. Currently empty. This block is loaded after {%
render_block 'js' %}.

{% block bottom_css %} Additional CSS placed just before the end of the <body>. Currently empty.

{% block meta %} Contains the meta description of the page. Defaults to:

<meta name="description" content="{% page_attribute meta_description %}"/>
<meta property="og:type" content="website"/>
<meta property="og:title" content="{% page_attribute "page_title" %}"/>
<meta property="og:description" content="{% page_attribute meta_description %}"/>

3.1. Contents 7

https://getbootstrap.com/

djangocms-frontend Documentation, Release 0.9.0

{% block canonical_url %} Contains the canonical url of the page. Defaults to:

<link rel="canonical" href="{{ request.build_absolute_uri }}"/>
<meta property="og:url" content="{{ request.build_absolute_uri }}"/>

Granting rights

If you have restricted rights for users our groups in your projects make sure that editors have the right to to add, change,
delete, and - of course - view instances of all djangocms_frontend UI items:

• Accordion

• Alert

• Badge

• Card

• Carousel

• Collapse

• Content

• Forms

• Grid

• Image

• Jumbotron

• Link

• Listgroup

• Media

• Tabs

• Utilities

Otherwise the plugins will not be editable and will not appear in the editors’ plugin selection when adding a plugin in
the frontend.

Since changing them for each of the plugins manually can become tiresome a management command can support you.

First manually define the permissions for the model FrontendUIItem of the app djangocms_frontend. Then you
can synchronize all permissions of the installed UI items by typing

./manage.py frontend sync_permissions users

./manage.py frontend sync_permissions groups

These commands transfer the permissions for FrontendUIItem to all installed plugins for each user or group, respec-
tively.

The first command is only necessary of you define by-user permissions. Depending on the number of users it may take
some time.

Attention: If in doubt, please make a backup of your database tables. This operation cannot be undone!

8 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

Migrating from djangocms-bootstrap4

In the case you have a running django CMS project using djangocms-bootstrap4 you can try to run the automatic
migration process. This process converts all plugin instances of djangocms-bootstrap4 into corresponding djangocms-
frontend plugins.

Note: Bootstrap 4 and Bootstrap 5 differ, hence even a successful migration will require manual work to fix differences.
The migration command is a support to reduce the amount of manual work. It will not do everything automatically!

The more your existing installation uses the attributes field (found in “advanced settings”) the more likely it is, that you
will have to do some manual adjustment. While the migration command does adjust settings in the attributes field it
cannot know the specifics of your project.

Attention: Please do back up your database before you do run the management command!

For this to work, the both the djangocms-frontend and the djangocms-bootstrap4 apps need to be included in
INSTALLED_APPS.

./manage.py frontend migrate

After you finish the migration you can remove all djangocms-bootstrap4 apps from INSTALLED_APPS and you may
delete the now empty database tables of djangocms-bootstrap4. You identify them by their name pattern:

bootstrap4_alerts_bootstrap4alerts
bootstrap4_badge_bootstrap4badge
...
bootstrap4_utilities_bootstrap4spacing

Using djangocms-frontend

djangocms-frontend offers a set of plugins to allow for an easy and clean structure of your CMS contents.

All plugins are listed in the section “Frontend” when adding a plugin to a placeholder:

3.1. Contents 9

https://github.com/django-cms/djangocms-bootstrap4

djangocms-frontend Documentation, Release 0.9.0

Frontend editing of plugins has been updated compared to djangocms-bootstrap4 with three aims:

• Keep the essential editing required minimal and well-arranged on the editing forms.

• Eliminate the need for regularly adding html classes or other attributes like styles.

• Keep the possibility to change the html classes or tags in the rare case it is needed.

The editing has therefore been categorized in tabs starting with a plugin’s key tab for its most important information.
Other tabs add general modifications to the plugin, their availabilty depending on the plugin type. The well-known
“advanced settings” is available to all plugins, however, its use should in most case be covered by the new other tabs:

10 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

Background tab

The background tab allows to set a background context leading to the background being colored appropriately.

The background properties can be modified by changing opacity and its ability cast a shadow. Shadows allow the
whole element to appear elevanted from the background.

3.1. Contents 11

djangocms-frontend Documentation, Release 0.9.0

Spacing tab

The spacing tab is used to set margins and paddings and to select which devices they should be applied.

For both margin and paddings the settings can be made independently for horizontal and vertical paddings.

12 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

Visibility tab

The visibility tab controls on which devices the elements and its children should be visible. Use this to design different
content for different devices.

3.1. Contents 13

djangocms-frontend Documentation, Release 0.9.0

Advanced settings tab

The advanced tab lets you chose which tag (typically a div) should be used to render the element. You may also add
attributes like additional classes as a class attribute, an id or styles in the style attribute.

14 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

Warning: Using the advanced tab requires some technical knowlege on the sites installation, e.g., what css classes
are available. This is why the advanced settings tab should only be used rarely. If you find yourself using it regularly,
extending djangocms-frontend using a theme might be the more editor-friendly and more maintainable solution.

The advanced tab label carries a blue-ish dot to indicate that attributes are set in the advanced settings tab. These
attributes can change the appearance of the element significantly which is why the dot reminds the editor that there are
advanced settings present.

3.1. Contents 15

djangocms-frontend Documentation, Release 0.9.0

Error indicators

In case the form is not valid when the user tries to save all fields that are marked invalid will have an error message
attached. Since not all fields are visible in tabbed editing tabs containing an error have a red badge at the upper right
corner:

3.1.2 Grid plugins

For details on how grids work, see, e.g. the Bootstrap 5 documentation.

Container

A container is an invisible element that wraps other content. There are in two types of containers:

Container All other containers restrict the width of their content depending on the used device.

Fluid container A fluid container occupies the full width available - no matter how wide the viewport (or containing)
element is.

Full container A full container is like a fluid container and occupies the full width available. Additionally, it does
not have a padding. Its content can therefore fill the entire area. Full containers are useful if you want to add a
background color or shadow to another DOM element, like, e.g., the contents of a column.

Note:
New feature: Containers can have a background color (“context”), opacity and shadow.

Row

A row contains one or more columns. By default columns are displayed next to each other.

To automatically create not only a row but also some columns within that row, enter the number of columns you will
be using. You can always later add more columns to the row or delete columns from the row.

Vertical alignmend defines how columns of different height are positioned against each other.

Horizontal alignment defines how columns that do not fill an entire row are distributed horizontally.

Note: New feature:

The section “Row-cols settings” defines how many columns should be next to each other for a given display size.
The “row-cols” entry defines the number of columns on mobile devices (and above if no other setting is given), the
“row-cols-xl” entry the number of columns on a xl screen.

16 Chapter 3. Description

https://getbootstrap.com/docs/5.1/layout/grid/

djangocms-frontend Documentation, Release 0.9.0

Column

The column settings is largely about how much of the grid space the column will use horizontally. To this end, the grid
is divided in (usually) 12 strips of equal width.

Auto sizing If no information on the column size is given, the column will be autosizing. This means that all autosizing
columns of a row will occupy the same fraction of the space left, e.g. by sized columns.

Specifically sized columns If you enter a number the column for the specific screen size will exactly have the specified
width. The unit of width is one twelfth of the surrounding’s row width.

Natural width: If you need a column to take its natural width, enter 0 for its column size.

Also, you can adjust the vertical alignment of the specific column from the row’s default setting.

Finally, you can set the alignment of the content to left (right in a rtl environment), center or right (left in a rtl environ-
ment). This comes handy if, e.g., the column is supposed to contain centered content.

3.1. Contents 17

djangocms-frontend Documentation, Release 0.9.0

Note:
Removed: The column type entry has been removed since it was a legacy from Bootstrap version 3.

3.1.3 Component plugins

djangocms-frontend adds a set of plugins to Django-CMS to allow for quick usage of components defined by the
underlying css framework, e.g. bootstrap 5.

While djangocoms-frontend is set up to become framework agnostic its heritage from djangocms-bootstrap4 is
intentionally and quite visible. Hence for the timne being, this documentation references the Bootstrap 5 documentation.

18 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

Accordion component

Build vertically collapsing sections using accordions:

Accordions consist of an Accordion plugin which has an Accordion Item plugin for each collapsable section.

Also see Bootstrap 5 Accordion documentation.

3.1. Contents 19

https://getbootstrap.com/docs/5.0/components/accordion/

djangocms-frontend Documentation, Release 0.9.0

Alert component

Alerts provide contextual feedback messages for typical user actions with a handful of available alert messages.

Alerts can be marked dismissible which implies that a close button is added on the right hand side.

Note:
New features: Alerts can have shadows to optically lift them.

Also see Bootstrap 5 Alerts documentation.

Badge component

Badges are small count and labeling components usually in headers and buttons.

While often useful if populated automatically as opposed to statically in a plugin, badges are useful, e.g., to mark
featured or new headers.

Also see Bootstrap 5 Badge documentation.

20 Chapter 3. Description

https://getbootstrap.com/docs/5.0/components/alerts/
https://getbootstrap.com/docs/5.0/components/badge/

djangocms-frontend Documentation, Release 0.9.0

Card component

A card is a flexible and extensible content container. It includes options for headers and footers, a wide variety of
content, contextual background colors, and powerful display options.

A card consists of the card wrapper itself, the Card Plugin. It can contain one ore more instances of a Card Inner Plugin
for header, body or footer, but also potentially an Image Plugin for the card image or list group components.

The corresponding plugin tree is here:

3.1. Contents 21

djangocms-frontend Documentation, Release 0.9.0

Cards can be grouped by a Card Layout component offering the ability group cards or display a grid of cards. The
latter can be controlled by responsive tools. If you need more granular responsive settings, please revert to Grid plugins
and build your own custom grid.

Warning: djangocms-bootstrap4 Card Decks are not supported by Bootstrap 5. Card decks will be converted to
grids of cards upon Migrating from djangocms-bootstrap4.

Card

The card resides in a Card plugin which allows for coloring, opacity and shadow options.

22 Chapter 3. Description

https://getbootstrap.com/docs/5.1/components/card/#card-layout

djangocms-frontend Documentation, Release 0.9.0

Content is added to the card plugin by creating child plugins. These can be of the type Card inner, Picture / Image,
List group, or Row.

Note:
New feature: By adding images or list groups directly to a card, unnecessary margins are avoided.

Card inner

The Card Inner plugin allows to add the card header, body, footer or an overlay space for a card image.

3.1. Contents 23

djangocms-frontend Documentation, Release 0.9.0

Here is an example of the new card Image overlay feature:

Also see Bootstrap 5 Card documentation.

24 Chapter 3. Description

https://getbootstrap.com/docs/5.0/components/card/

djangocms-frontend Documentation, Release 0.9.0

Carousel component

A Carousel is a set of images (pontentially with some description) that slide in (or fade in) one after the other after a
certain amount of time.

Collapse component

The Collapse hides text behind its headline and offers the user a trigger (e.g., a button) to reveal itself.

Compared to the accordion component the collapse component often is more flexible but also requires more detailed
styling.

Jumbotron component

The jumbotron component is a large header, used e.g. as a page header. It has been part of Bootstrap 4 and is still
supported as a convenient way to generate page headers.

Note: The jumbotron header is not reflected by the table of contents component.

Link / Button component

The link / button plugin creates a styled link or button (using the <a> HTML tag).

It is designed to allow for external and internal links. Internal links point to a CMS page or pages of other Django
applications. They are dynamic, i.e. if the page’s url changes (e.g. because it is moved in the page tree) all links
pointing to the page change accordingly.

Note: djangocms-frontend uses django-cms’ function get_page_choices(lang) to get the list of available pages
in the current language.

The developer can extend the list of available internal link targets to pages outside the CMS page tree using the
DJANGOCMS_FRONTEND_LINK_MODELS setting in the project’s .settings file. The link/button component can point
to any page controlled by a Django model if the model class implements the get_absolute_urlmethod. A typical use
case would, e.g., blog entries of djangocms-blog. (This approach was inspired by mkoisten’s djangocms-styledlink.)

For more information, see How to add internal link targets outside the CMS

Note: Only those destinations (outside the CMS) are shown for which a model admin is registered and the logged in
user has view permissions: A user will only see a destination if they can view it in the admin site.

3.1. Contents 25

https://getbootstrap.com/docs/5.0/components/carousel/
https://getbootstrap.com/docs/5.0/components/collapse/
https://github.com/nephila/djangocms-blog
https://github.com/mkoistinen/djangocms-styledlink

djangocms-frontend Documentation, Release 0.9.0

List group component

List groups are a flexible and powerful component for displaying a series of content. Modify and extend them to support
just about any content within.

The component consists of a wrapper - ListGroup Plugin - and the items of the list - ListGroupItem Plugin. If the list
item is a link it suffices to instert a Link Plugin directly as a child of the ListGroup Plugin.

List group

The only setting is the list group flush setting. If checked, the list group will be rendered without borders to blend into
the surrounding element, e.g. a card.

List group item

Simple content can be specified by providing “One line content”. More complex content of a list group item is rendered
by child plugins. If child plugins are available the “one line content” is ignored.

List group items can have a context (color), and three state: Regular, active and disabled.

Note:
New feature: Links can be added to list groups and automatically are interpreted as list group items.

Media component

The media component is another legacy component from djangocms-bootstrap4. djangocms-frontend recreates it
using responsive utilities.

Picture / image component

The image or picture component make responsive picture uploads available as well as responsive embedding of external
pictures.

Spacing component

The spacing component provides horizontal and/or vertical spacing. If used without child plugins it just provides the
amount of space specified on the specified sides.

Note: If no spacing is selected the spacing component can be used to individually style the content using the attributes
fields in “Advanced Settings”.

26 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

Blockquote component

Creates a ``<blockquote>``tag.

Note:
New feature: Alternatively to the unformatted quote text, child plugins can be used to fill the content of the blockquote.

Code component

Have code snippets on your site using this plugin, either inline or as a code block.

Figure component

The figure component supplies a wrapper and a caption for a figure. The figure itself is placed inside the figure com-
ponent (as child plugins).

Tabs component

Note: Bootstrap 5 comes with a fade animation. Additional animations will have to be provided by you or
a third party. If you use a CSS animation library, you can make these animations available by adjusting the
DJANGOCMS_FRONTEND_TAB_EFFECTS setting.

3.1.4 Forms

Note: The form app is not yet finished. Please stay tuned.

3.1.5 How-to guides

How to add internal link targets outside the CMS

By default the link/button component offers available CMS pages of the selected language as internal links.

The developer may extend this setting to include other page-generating Django models as well by adding the
DJANGOCMS_FRONTEND_LINK_MODELS setting to the project’s .settings.py file.

settings.DJANGOCMS_FRONTEND_LINK_MODELS
settings.DJANGOCMS_FRONTEND_LINK_MODELS contains a list of additional models that can be linked.

Each model is specified within its own dict. The resulting drop-down list will contain objects grouped by their
type. The order of the types in the list is defined by the order of their definition in this setting.

The only required attribute for each model is class_path, which must be the full python path to the model.

Additional attributes are:

type: This is the name that will appear in the grouped dropdown menu. If not specified, the name of the class
will be used E.g., “Page”.

3.1. Contents 27

djangocms-frontend Documentation, Release 0.9.0

filter: You can specify additional filtering rules here. This must be specified as a dict but is converted directly
into kwargs internally, so, {'published': True} becomes filter(published=True) for example.

order_by: Specify the ordering of any found objects exactly as you would in a queryset. If this is not provided,
the objects will be ordered in the natural order of your model, if any.

search: Specifies which (text) field of the model should be searched when the user types a search string.

Note: Each of the defined models must define a get_absolute_url() method on its objects or the configuration
will be rejected.

Example for a configuration that allows linking CMS pages plus two different page types from two djangocms-blog
apps called “Blog” and “Content hub” (having the app_config_id 1 and 2, respectively):

DJANGOCMS_FRONTEND_LINK_MODELS = [
{

"type": _("Blog pages"),
"class_path": "djangocms_blog.models.Post",
"filter": {"publish": True, "app_config_id": 1},
"search": "translations__title",

},
{

"type": _("Content hub pages"),
"class_path": "djangocms_blog.models.Post",
"filter": {"publish": True, "app_config_id": 2},
"search": "translations__title",

},
]

Another example might be (taken from djangocms-styledlink documentation):

DJANGOCMS_FRONTEND_LINK_MODELS = [
{

'type': 'Clients',
'class_path': 'myapp.Client',
'manager_method': 'published',
'order_by': 'title'

},
{

'type': 'Projects',
'class_path': 'myapp.Project',
'filter': { 'approved': True },
'order_by': 'title',

},
{

'type': 'Solutions',
'class_path': 'myapp.Solution',
'filter': { 'published': True },
'order_by': 'name',

}
]

The link/button plugin uses select2 to show all available link targets. This allows you to search the page titles.

28 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

Warning: If you have a huge number (> 1,000) of link target (i.e., pages or blog entries or what-
ever) the current implementation might slow down the editing process. In your settings file you can set
DJANGOCMS_FRONTEND_MINIMUM_INPUT_LENGTH to a value greater than 1 and djangocms-frontend will wait
until the user inputs at least this many characters before querying potential link targets.

How to extend existing plugins

Existing plugins can be extended through two type of class mixins. djangocms-frontend looks for these mixins in
two places:

1. In the theme module. Its name is specified by the setting DJANGOCMS_FRONTEND_THEME and defaults to
djangocms_frontend. For a theme app called theme and the bootstrap5 framework this would be theme.
frontends.bootstrap5.py.

2. In djangocms_frontend.contrib.*app*.frontends.*framework*.py. For the alert app and the bootstrap5 frame-
work this would be djangocms_frontend.contrib.alert.frontends.bootstrap5.py.

Both mixins are included if they exist and all methods have to call the super methods to ensure all form extensions and
render functionalities are processed.

The theme module is primarily thought to allow for third party extensions in terms of functionality and/or design.

The framework module is primarily thought to allow for adaptation of djangocms-frontend to other css frameworks
besides Bootstrap 5.

RenderMixins

The render mixins are called “PluginName RenderMixin”, e.g. AlertRenderMixin and are applied to the plugin class.
This allows for the redefinition of the CMSPlugin.render method, especially to prepare the context for rendering.

In addition it allows the definition of CMSPlugin.get_fieldsets it allows for extension or change of the plugin’s
admin form. The admin form is used to edit or create a plugin.

FormMixins

Form mixins are used to add fields to a plugin’s admin form. These fields are available to the render mixins and, of
course, to the plugin templates.

Working example

Let’s say you wanted to extend the GridContainerPlugin to offer the option for a background color, a background
image, some transparency and say a blur effect.

First, you add some fields to the GridContainerForm (in theme.forms):

from django.db.models import ManyToOneRel
from django import forms
from django.utils.translation import gettext as _
from djangocms_frontend.fields import ColoredButtonGroup
from filer.fields.image import AdminImageFormField, FilerImageField
from filer.models import Image

(continues on next page)

3.1. Contents 29

djangocms-frontend Documentation, Release 0.9.0

(continued from previous page)

from djangocms_frontend import settings
from entangled.forms import EntangledModelFormMixin

class GridContainerFormMixin(EntangledModelFormMixin):
class Meta:

entangled_fields = {
"config": [

"container_context",
"container_opacity",
"container_image",
"image_position",
"container_blur",

]
}

container_context = forms.ChoiceField(
label=_("Background context"),
required=False,
choices=settings.EMPTY_CHOICE + settings.COLOR_STYLE_CHOICES,
initial=settings.EMPTY_CHOICE,
help_text=_("Covers image."),
widget=ColoredButtonGroup(),

)
container_opacity = forms.IntegerField(

label=_(""),
required=False,
initial=100,
widget=forms.TextInput(attrs=dict(type="range", min=0, max=100)),
help_text=_("Opacity of container background (left: transparent, right: opaque).

→˓")
)
container_image = AdminImageFormField(

rel=ManyToOneRel(FilerImageField, Image, "id"),
queryset=Image.objects.all(),
to_field_name="id",
label=_("Image"),
required=False,
help_text=_("If provided used as a cover for container."),

)
image_position = forms.ChoiceField(

required=False,
choices=settings.EMPTY_CHOICE + settings.IMAGE_POSITIONING,
initial="",
label=_("Background image position"),

)

Then, add a GridContainerMixin in theme.bootstrap5:

from django.utils.translation import gettext as _
from djangocms_frontend.helpers import insert_fields

(continues on next page)

30 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

(continued from previous page)

class GridContainerRenderMixin:
def render(self, context, instance, placeholder):

if getattr(instance, "container_image", None):
context["add_classes"] = "imagecontainer"
context["bg_color"] = f"bg-{instance.container_context}" if getattr(instance,

→˓ "container_context", False) else ""
else:

context["add_classes"] = f"bg-{instance.container_context}" if␣
→˓getattr(instance, "container_context", False) else ""

context["bg_color"] = False
return super().render(context, instance, placeholder)

def get_fieldsets(self, request, obj=None):
return insert_fields(self.fieldsets, (

"container_context",
"container_image",
("image_position", "container_opacity",),

), block=None, position=1, blockname=_("Background"))

The rendermethod provides required context data for the extended functionality. In this case it adds “imagecontainer”
to the list of classes for the container, processes the background colors, as well as opacity and blur.

The get_fieldsets methed is used to make Django-CMS show the new form fields in the plugin’s edit modal (admin
form, technically speaking).

Lastly, a new template is needed (in "djangocms_frontend/bootstrap5/grid_container.html"):

{% load cms_tags %}{% spaceless %}
<{{ instance.tag_type }}{{ instance.get_attributes }}

{% if instance.container_opacity and not instance.image %}
style="opacity: {{ instance.container_opacity }}%;

{% if instance.container_blur %}backdrop-filter: blur({{ instance.
→˓container_blur }}px);

{% endif %}"
{% endif %}

>
{% if instance.image %}
<div class="image"

style="background-image: url('{{ instance.image.url }}');
background-position: {{ instance.image_position|default:'center center

→˓' }};
background-repeat: no-repeat;
background-size: cover;
{% if instance.container_blur %} filter: blur({{instance.container_

→˓blur}}px);{% endif %}">
</div>

{% elif instance.container_image %}
<div class="image placeholder placeholder-wave"></div>

{% endif %}
{% if instance.video and instance.image %}
<video class="image" playsinline autoplay muted loop>
<source src="{{ instance.video.url }}" media="screen and (min-width:768px)">

</video>
(continues on next page)

3.1. Contents 31

djangocms-frontend Documentation, Release 0.9.0

(continued from previous page)

{% endif %}
{% if bg_color %}<div class="cover {{bg_color}}"{% if instance.container_opacity %}

→˓ style="opacity: {{ instance.container_opacity }}%"{% endif %}></div>{% endif %}
{% if "imagecontainer" in add_classes %}<div class="content">{% endif %}

{% for plugin in instance.child_plugin_instances %}
{% render_plugin plugin %}

{% endfor %}
{% if "imagecontainer" in add_classes %}</div>{% endif %}

</{{ instance.tag_type }}>
{% endspaceless %}

With these three additions, all grid container plugins will now have additional fields to define abckground images to
cover the container area.

If the theme is taken out of the path djangocms-frontend will fall back to its basic functionality, i.e. the background
images will not be shown. As long as plugins are not edited the background image information will be preserved.

How to create a theme app

djangocms-frontend is designed to be “themable”. A theme typically will do one or more of the following:

• Style the appearance using css

• Extend standard plugins

• Add custom plugins

How to add the tab editing style to my other plugins

If you prefer the tabbed frontend editing style of djangocms-frontend you can easily add it to your own plugins.

If you use the standard editing form, just add a line specifying the change_form_template to your plugin class:

class MyCoolPlugin(CMSPluginBase):
...
change_form_template = "djangocms_frontend/admin/base.html"
...

If you already have your own change_form_template, make sure it extends djangocms_frontend/admin/base.
html:

{% extends "djangocms_frontend/admin/base.html" %}
{% block ...%}

...
{% endblock %}

32 Chapter 3. Description

djangocms-frontend Documentation, Release 0.9.0

3.1.6 Reference

Settings

Available settings will be revised. For now only the following can be changed:

settings.DJANGOCMS_FRONTEND_TAG_CHOICES
Defaults to ['div', 'section', 'article', 'header', 'footer', 'aside'].

Lists the choices for the tag field of all djangocms-frontend plugins. div is the default tag.

settings.DJANGOCMS_FRONTEND_GRID_SIZE
Defaults to 12.

settings.DJANGOCMS_FRONTEND_GRID_CONTAINERS
Default:

(
('container', _('Container')),
('container-fluid', _('Fluid container')),
("container-sm", _("sx container")),
("container-md", _("md container")),
("container-lg", _("lg container")),
("container-xl", _("xl container")),

)

settings.DJANGOCMS_FRONTEND_USE_ICONS
Defaults to True.

Decides if icons should be offered, e.g. in links.

settings.DJANGOCMS_FRONTEND_CAROUSEL_TEMPLATES
Defaults to (('default', _('Default')),)

settings.DJANGOCMS_FRONTEND_TAB_TEMPLATES
Defaults to (('default', _('Default')),)

settings.DJANGOCMS_FRONTEND_SPACER_SIZES
Default:

(
('0', '* 0'),
('1', '* .25'),
('2', '* .5'),
('3', '* 1'),
('4', '* 1.5'),
('5', '* 3'),

)

settings.DJANGOCMS_FRONTEND_CAROUSEL_ASPECT_RATIOS
Default: ((16, 9),)

Additional aspect ratios offered in the carousel component

settings.DJANGOCMS_FRONTEND_COLOR_STYLE_CHOICES
Default:

3.1. Contents 33

djangocms-frontend Documentation, Release 0.9.0

(
('primary', _('Primary')),
('secondary', _('Secondary')),
('success', _('Success')),
('danger', _('Danger')),
('warning', _('Warning')),
('info', _('Info')),
('light', _('Light')),
('dark', _('Dark')),
('custom', _('Custom')),

)

DJANGOCMS_FRONTEND_MINIMUM_INPUT_LENGTH
If unset or smaller than 1 the link plugin will render all link options into its form. If 1 or bigger the link form
will wait for the user to type at least this many letters and search link targets matching this search string using an
ajax request.

TEXT_SAVE_IMAGE_FUNCTION
Requirement: TEXT_SAVE_IMAGE_FUNCTION = None

Warning: Please be aware that this package does not support djangocms-text-ckeditor’s Drag & Drop
Images so be sure to set TEXT_SAVE_IMAGE_FUNCTION = None.

Models

djangocms-frontend subclasses the CMSPlugin model.

class FrontendUIItem(CMSPlugin)
Import from djangocms_frontend.models.

All concrete models for UI items are proxy models of this class. This implies you can create, delete and update
instances of the proxy models and all the data will be saved as if you were using this original (non-proxied)
model.

This way all proxies can have different python methods as needed while still all using the single database table
of FrontendUIItem.

FrontendUIItem.ui_item
This CharField contains the UI item’s type without the suffix “Plugin”, e.g. “Link” and not “LinkPlugin”. This
is a convenience field. The plugin type is determined by CMSPlugin.plugin_type.

FrontendUIItem.tag_type
This is the tag type field determining what tag type the UI item should have. Tag types default to <div>.

FrontendUIItem.config
The field config is the JSON field that contains a dictionary with all specific information needed for the UI item.
The entries of the dictionary can be directly read as attributes of the FrontendUIItem instance. For example,
ui_item.context will give ui_item.config["context"].

Warning: Note that changes to the config must be written directly to the dictionary: ui_item.
config["context"] = None.

34 Chapter 3. Description

https://github.com/divio/djangocms-text-ckeditor/#drag--drop-images
https://github.com/divio/djangocms-text-ckeditor/#drag--drop-images

djangocms-frontend Documentation, Release 0.9.0

FrontendUIItem.add_classes(self, *args)
This helper method allows a Plugin’s render method to add framework-specific html classes to be added when a
model is rendered. Each positional argument can be a string for a class name or a list of strings to be added to
the list of html classes.

These classes are not saved to the database. They merely a are stored to simplify the rendering process and are
lost once a UI item has been rendered.

FrontendUIItem.get_attributes(self)
This method renders all attributes given in the optional attributes field (stored in .config). The class
attriubte reflects all additional classes that have been passed to the model instance by means of the .add_classes
method.

FrontendUIItem.initialize_from_form(self, form)
Since the UIItem models do not have default values for the contents of their .config dictionary, a newly created
instance of an UI item will not have config data set, not even required data.

This method initializes all fields in .config by setting the value to the respective initial property of the UI
items admin form.

FrontendUIItem.get_short_description(self)
returns a plugin-specific short description shown in the structure mode of django CMS.

Form widgets

djangocms-frontend contains button group widgets which can be used as for forms.ChoiceField. They might turn
out helpful when adding custom plugins.

class ButtonGroup(forms.RadioSelect)
Import from djangocms_frontend.fields

The button group widget displays a set of buttons for the user to chose. Usable for up to roughly five options.

class ColoredButtonGroup(ButtonGroup)
Import from djangocms_frontend.fields

Used to display the context color selection buttons.

class IconGroup(ButtonGroup)
Import from djangocms_frontend.fields.

This widget displays icons in stead of text for the options. Each icon is rendered by <span class="icon
icon-{{value}}">. Add css in the Media subclass to ensure that for each option’s value the span
renders the appropriate icon.

class IconMultiselect(forms.CheckboxSelectMultiple)
Import from djangocms_frontend.fields.

Like IconGroup this widget displays a choice of icons. Since it inherits from CheckboxSelectMultiple the
icons work like checkboxes and not radio buttons.

OptionalDeviceChoiceField(forms.MultipleChoiceField):
Import from djangocms_frontend.fields.

This form field displays a choice of devices corresponding to breakpoints in the responsive grid. The user can
select any combination of devices including none and all.

The result is a list of values of the selected choices or None for all devices selected.

class DeviceChoiceField(OptionalDeviceChoiceField)
Import from djangocms_frontend.fields.

3.1. Contents 35

djangocms-frontend Documentation, Release 0.9.0

This form field is identical to the OptionalDeviceChoiceField above, but requires the user to select at least
one device.

Management commands

Management commands are run by typing ./manage.py command in the project directory.

migrate_frontend Migrates plugins from other frontend packages to djangocms-frontend. Currently supports
djangocms-bootstrap4 and djangocms_styled_link.

stale_frontend_references If references in a UI item are moved or removed, the UI items are designed to fall
back gracefully and both not throw errors or be deleted themselves (by a db cascade).

The drawback is, that references might become stale. This command prints all stale references, their plugins and
pages/placeholder they belong to.

Running Tests

You can run tests by executing:

virtualenv env
source env/bin/activate
pip install -r tests/requirements.txt
python ./run_tests.py

3.1.7 Index

3.2 Indices and tables

• Index

• search

36 Chapter 3. Description

https://docs.python.org/3/genindex.html

INDEX

A
Accordion, 18
add_classes() (FrontendUIItem method), 34
Alert, 19

B
Badge, 20
base.html, 6
Blockquote, 26
Button, 25
ButtonGroup (built-in class), 35

C
Card, 20
CardInner, 20
CardLayout, 20
Carousel, 24
Code, 27
ColoredButtonGroup (built-in class), 35
Column, 17
config (FrontendUIItem attribute), 34
Container, 16

D
DeviceChoiceField (built-in class), 35
DJANGOCMS_FRONTEND_CAROUSEL_ASPECT_RATIOS

(settings attribute), 33
DJANGOCMS_FRONTEND_CAROUSEL_TEMPLATES (settings

attribute), 33
DJANGOCMS_FRONTEND_COLOR_STYLE_CHOICES (set-

tings attribute), 33
DJANGOCMS_FRONTEND_GRID_CONTAINERS (settings at-

tribute), 33
DJANGOCMS_FRONTEND_GRID_SIZE (settings attribute),

33
DJANGOCMS_FRONTEND_LINK_MODELS (settings at-

tribute), 27
DJANGOCMS_FRONTEND_MINIMUM_INPUT_LENGTH, 34
DJANGOCMS_FRONTEND_SPACER_SIZES (settings at-

tribute), 33
DJANGOCMS_FRONTEND_TAB_TEMPLATES (settings

attribute), 33

DJANGOCMS_FRONTEND_TAG_CHOICES (settings at-
tribute), 33

DJANGOCMS_FRONTEND_USE_ICONS (settings attribute),
33

F
Figure, 27
FrontendUIItem (built-in class), 34

G
get_attributes() (FrontendUIItem method), 35
get_short_description() (FrontendUIItem method),

35

I
IconGroup (built-in class), 35
IconMultiselect (built-in class), 35
Image, 26
initialize_from_form() (FrontendUIItem method),

35
Installation, 5

J
Jumbotron, 25

L
Link, 25

M
manage.py, 8
migrate, 8
Migration from Bootstrap 4, 8

P
Picture, 26
Plugins, 18

R
Row, 16

S
Spacer, 26

37

djangocms-frontend Documentation, Release 0.9.0

Spacing, 26

T
Tabs, 27
tag_type (FrontendUIItem attribute), 34
TEXT_SAVE_IMAGE_FUNCTION, 34

U
ui_item (FrontendUIItem attribute), 34

38 Index

	djangocms-frontend
	Key features
	Description
	Contents
	Getting started
	Installation
	Install package
	Make apps available to your django project
	Create necessary database table
	Adding styles and javascript manually
	Using example templates of djangocms-frontend
	Granting rights

	Migrating from djangocms-bootstrap4
	Using djangocms-frontend
	Background tab
	Spacing tab
	Visibility tab
	Advanced settings tab
	Error indicators

	Grid plugins
	Container
	Row
	Column

	Component plugins
	Accordion component
	Alert component
	Badge component
	Card component
	Card
	Card inner

	Carousel component
	Collapse component
	Jumbotron component
	Link / Button component
	List group component
	List group
	List group item

	Media component
	Picture / image component
	Spacing component
	Blockquote component
	Code component
	Figure component
	Tabs component

	Forms
	How-to guides
	How to add internal link targets outside the CMS
	How to extend existing plugins
	RenderMixins
	FormMixins
	Working example

	How to create a theme app
	How to add the tab editing style to my other plugins

	Reference
	Settings
	Models
	Form widgets
	Management commands
	Running Tests

	Index

	Indices and tables

	Index

